Welcome to YLOAN.COM
yloan.com » Motors » Dc Building Power: Economic Factors, Application Drivers, Architecture/technology, Standards
Sportboats Motors Recreation Sports Baseball Cycling Fishing Football Golf Martial-Arts Running Soccer Swimming Tennis Basketball Volleyball Squash Badminton racing Bowling Climbing Dance Gymnastics Handball Skiing

Dc Building Power: Economic Factors, Application Drivers, Architecture/technology, Standards

The DC building power market is projected to grow significantly over the next several years

, and among the driving forces is the need to improve efficiency and reduce electricity costs in several areas. According to the US Environmental Protection Agency (EPA), in 2006, data centers and servers in the United States accounted for approximately 1.5% of the nations total electricity consumption. To put this in perspective, the EPA stated that this total exceeded the electricity consumed by the entire nations color televisions, and is similar to the amount of electricity consumed by approximately 5.8 million average TV households. In addition, energy consumption in data centers in the US is projected to continue to grow, and double every five years.

Traditionally, large data centers and telecommunications facilities have consumed large amounts of electricity without much regard for energy efficiency. Due to the continuous need for energy production, it has been an acceptable practice to trade off energy efficiency and operating costs for the sake of system reliability. However, in recent years a number of factors have emerged that may change that practice. Now, a debate is taking place on how to cope with the growing need for electricity to power these facilities. Data center managers and other data center professionals are looking to dc power as an alternative solution to traditional ac power. Proponents of dc power claim that it has the potential to eliminate the biggest sources of energy loss and waste in traditional ac systems: the multiple back and forth transformations and conditioning needed to step voltage down for use by IT equipment.

One of the pressing needs for the further expansion of dc power was the establishment of dc voltage standards. In light of this need, two new dc power distribution standards for facilities were developed over the past year, one for high-voltage (380Vdc) applications and another for low-voltage (24Vdc) applications. The development of theses standards is significant and is expected to contribute to the further expansion of dc power. The 380Vdc standard was developed by the Electric Power Research Institute (EPRI) along with Lawrence Berkeley National Laboratories and is designed for data centers and other critical facilities. EPRI has developed the first dc voltage tolerance envelope plotting voltage variations versus time for 380-Vdc powered equipment. The new dc voltage tolerance envelope provides the technical details of the electrical operating environment, including allowable voltage surges and sags that could enable engineers to design power converters for use with 380-Vdc distribution systems for next-generation data center equipment.

The 24Vdc standard was developed by EMerge and is expected to play an important role in the expansion of dc power in commercial, industrial and residential buildings. The new EMerge Alliance standard is described as the first roadmap for the utilization of safe, low-voltage direct current power in commercial interiors. The EMerge Alliance Standard 1.0 establishes a more efficient means of powering the rapidly increasing number of digital, dc-powered devices, such as sensors, lighting and IT equipment found in todays workplaces. It creates an integrated, open platform for power, interior infrastructures, controls and a wide variety of peripheral devices to facilitate the hybrid use of ac and dc power within buildings.


As the emergence of the EMerge Alliance standard suggests, dc power can be used to improve efficiency at the lower-voltage levels. The addition of dc power delivery systems to homes, office building and commercial facilities offers the potential for significant improvements in energy delivery efficiency, reliability, power quality and cost of operation. Most of these facilities are currently dominated by fixed overhead lighting, and a variety of electrical devices that are typically wired for the buildings lifetime rather than the occupant or residents evolving needs. In fact, although opportunities exist in both new installations and retrofits, according to the EMerge Alliance, 80% of the market opportunities are in the updating and retrofitting of commercial buildings. Actually, the ability to distribute low-voltage dc power within common infrastructures is already present in most commercial interiors.

Lighting presents one of the major opportunities for the further development of dc power. According to a recent study funded by the U.S. Department of Energys Energy Efficiency and Renewable Energy Office (DOE EERE), lighting accounts for 22% of all electricity consumed in the United States. Commercial businesses consume 20% to 30% of their total energy just for lighting. And, 50% or more of that lighting-related energy may be wasted by obsolete equipment, inadequate maintenance or inefficient use. Upgrading lighting systems is one of the best energy efficiency investments available to a commercial facility. Since linear fluorescent light accounts for the majority of a commercial building's lighting energy use, improving the efficiency of these systems can save significant amounts of energy and money.

For more information on the report, kindly visit :


http://www.visionshopsters.com/product/2212/DC-Building-Power-Economic-Factors-Application-Drivers-Architecture-Technology-Standards-and-Regulatory-Developments.html

or email us your query at : info@visionshopsters.com

----------------------------------------------

by: Vision Shopsters
How Interest Rates Are Determined For Car Loans Arrangefor The Economy Digs Together With Tickets To Have A Alluring All Inclusive Cancun Vacation Build More Customers Online Through Search Engine Marketing 2009 Was A Difficult Period For General Motors Proper Identification Of A Right-Angled Ascending Broadening Pattern Formation Breckenridge Ski Resorts are the Ultimate Vacation Destination Broadening Bottom Pattern Formation - The Basics Atlanta Party Bus Ideas The Greatest Methods to Locate Utilized Vehicles For Purchase Affordable Citrix Xenapp Fundamentals Can MBT shoes take you go health road World Wide Van Lines: Information on How to Be a Better Driver World Wide Van Lines: General Moving Tips
print
www.yloan.com guest:  register | login | search IP(216.73.216.111) California / Anaheim Processed in 0.018403 second(s), 7 queries , Gzip enabled , discuz 5.5 through PHP 8.3.9 , debug code: 20 , 5625, 41,
Dc Building Power: Economic Factors, Application Drivers, Architecture/technology, Standards Anaheim