subject: Electrical aspects of operation Effect of temperature and Losses [print this page] Electrical aspects of operation Effect of temperature and Losses
Fluorescent lamps are negative differential resistance devices, so as more current flows through them, the electrical resistance of the fluorescent lamp drops, allowing even more current to flow. Connected directly to a constant-voltage power supply, a fluorescent lamp would rapidly self-destruct due to the uncontrolled current flow. To prevent this, fluorescent lamps must use an auxiliary device, a ballast, to regulate the current flow through the tube. where to buy cheap LED Strip? Lightereryday is a good choice.
The terminal voltage across an operating lamp varies depending on the arc current, tube diameter, temperature, and fill gas. A fixed part of the voltage drop is due to the electrodes. A general lighting service T12 48 inch (1200 mm) lamp operates at 430 mA, with 100 volts drop. High output lamps operate at 800 mA, and some types operate up to 1500 mA. The power level varies from 10 watts per foot (33 watts per meter) to 25 watts per foot (82 watts per meter) of tube length for T12 lamps.
The simplest ballast for alternating current use is an inductor placed in series, consisting of a winding on a laminated magnetic core. The inductance of this winding limits the flow of AC current. This type is still used, for example, in 120 volt operated desk lamps using relatively short lamps. Ballasts are rated for the size of lamp and power frequency. Where the mains voltage is insufficient to start long fluorescent lamps, the ballast is often a step-up autotransformer with substantial leakage inductance (so as to limit the current flow). Either form of inductive ballast may also include a capacitor for power factor correction.
Many different circuits have been used to operate fluorescent lamps. The choice of circuit is based on mains voltage, tube length, initial cost, long term cost, instant versus non-instant starting, temperature ranges and parts availability, etc.
Fluorescent lamps can run directly from a DC supply of sufficient voltage to strike an arc. The ballast must be resistive, and would consume about as much power as the lamp. When operated from DC, the starting switch is often arranged to reverse the polarity of the supply to the lamp each time it is started; otherwise, the mercury accumulates at one end of the tube. Fluorescent lamps are (almost) never operated directly from DC for those reasons. Instead, an inverter converts the DC into AC and provides the current-limiting function as described below for electronic ballasts.
The light output and performance of fluorescent lamps is critically affected by the temperature of the bulb wall and its effect on the partial pressure of mercury vapor within the lamp.Each lamp contains a small amount of mercury, which must vaporize to support the lamp current and generate light. At low temperatures the mercury is in the form of dispersed liquid droplets. As the lamp warms, more of the mercury is in vapor form. At higher temperatures, self-absorption in the vapor reduces the yield of UV and visible light. Since mercury condenses at the coolest spot in the lamp, careful design is required to maintain that spot at the optimum temperature, around 40 C. recommend directory: 24 key Infrared Controller.
By using an amalgam with some other metal, the vapor pressure is reduced and the optimum temperature range extended upward; however, the bulb wall "cold spot" temperature must still be controlled to prevent migration of the mercury out of the amalgam and condensing on the cold spot. Fluorescent lamps intended for higher output will have structural features such as a deformed tube or internal heat-sinks to control cold spot temperature and mercury distribution. Heavily loaded small lamps, such as compact fluorescent lamps, also include heat-sink areas in the tube to maintain mercury vapor pressure at the optimum value.
The efficiency of fluorescent lighting owes much to the fact that low pressure mercury discharges emit about 65% of their total light in the 254 nm line (another 1020% of the light is emitted in the 185 nm line). The UV light is absorbed by the bulb's fluorescent coating, which re-radiates the energy at longer wavelengths to emit visible light. The blend of phosphors controls the color of the light, and along with the bulb's glass prevents the harmful UV light from escaping.
Only a fraction of the electrical energy input into a lamp gets turned into useful light. The ballast dissipates some heat; electronic ballasts may be around 90% efficient. A fixed voltage drop occurs at the electrodes. Some of the energy in the mercury vapor column is also dissipated, but about 85% is turned into visible and ultraviolet light.
Not all the UV energy on the phosphor gets converted into visible light. In a modern lamp, for every 100 incident photons of UV impacting the phosphor, only 86 visible light photons are emitted (a quantum efficiency of 86%). The largest single loss in modern lamps is due to the lower energy of each photon of visible light, compared to the energy of the UV photons that generated them. Incident photons have an energy of 5.5 electron volts but produce visible light photons with energy around 2.5 electron volts, so only 45% of the UV energy is used. If a so-called "two-photon" phosphor could be developed, this would improve the efficiency but much research has not yet found such a system. recommend directory: RF controller.